Abstract

In this study, fouling propensities of loosely bound extracellular polymeric substances (LB-EPSs) and tightly bound EPSs (TB-EPSs) in a membrane bioreactor (MBR) were investigated. It was found that, both the LB-EPSs and TB-EPSs possessed rather high specific filtration resistance (SFR), and LB-EPSs possessed about three times higher SFR but a lower adhesion ability than the TB-EPSs. A series of characterizations demonstrated that LB-EPSs had higher ratio of proteins to polysaccharides (PN/PS ratio), lower CO bonds content, higher hydrophilicity, higher deformation or mixing ability and more abundant high molecular weight (MW) substances than TB-EPSs. Thermodynamic analyzes revealed that the total interaction energy between the TB-EPSs and membrane was always attractive and strengthened, well explaining the higher adhesion ability of the TB-EPSs than the LB-EPSs. Meanwhile, the filtration process was found to be associated with gel layer formation, and the high SFR of EPSs was caused by the chemical potential change in gel layer filtration. According to the Flory-Huggins lattice theory, LB-EPSs tended to form a gel layer with higher cross-linking and/or polymer entanglement level because they contained more abundant high molecular weight (MW) substance, corresponding to higher SFR than that of the TB-EPSs. The proposed thermodynamic mechanisms well interpreted the different fouling propensities of LB-EPSs and TB-EPSs in MBRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call