Abstract

In previous papers, several approaches to programming of the resulting force field in GFFF were described and investigated. The experiments were dealing with flow-velocity and channel thickness, i.e. factors influencing hydrodynamic lift forces (HLF). The potential of density and viscosity of carrier liquid for field programming was predicted and demonstrated by preliminary experiments. This work is devoted to experimental verification of the influence of carrier liquid density and viscosity. Several carrier liquid density and simultaneously viscosity gradients using water–methanol mixtures are in this work implemented in the separation of a model silica mixture. Working with the water–methanol gradients, one is not able to separate the influence of density from the contribution of viscosity. However, we found experimental conditions to show the isolated effect of carrier liquid density (two water–methanol mixtures of equal viscosity differing in their densities). In order to demonstrate the isolated effect of viscosity, we implemented in this work a new system of (hydroxypropyl)methyl cellulose (HPMC) carrier liquids. Three different HPMC compositions enabled to vary the viscosity more than two times at almost constant density. With increasing carrier liquid viscosity, the focusing and elevating trend was clearly pronounced for 5 and 10 μm silica particles. By the isolated effect of increased viscosity, the centre of the 10 μm particle zone was elevated to the streamline at 16% of the channel height. These experiments have shown that the influence of carrier liquid viscosity on HLF should be taken into account even at higher levels above the channel bottom, i.e. beyond the near-wall region. Further, it is shown that higher value of carrier liquid viscosity improves the separation of the model mixture in terms of time and resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.