Abstract

Noninvasive electromagnetic fields (EMFs) have been known to be able to improve bone health; however, their optimal application parameters and action mechanisms remain unclear. This study compared the effects of different forms of EMFs (sinusoidal, triangular, square, and serrated, all set at 50 Hz frequency and 1.8 mT intensity) on proliferation, differentiation and mineralization of rat calvarial osteoblasts. Square EMFs stimulated osteoblast proliferation but sinusoidal EMFs inhibited it. Sinusoidal and triangular EMFs produced significantly greater alkaline phosphatase (ALP) activity, ALP staining areas, calcium deposition, mineralized nodule areas, and mRNA expression of Runx-2, osteoprotegerin and insulin-like growth factor-I than square and serrated EMFs (P < 0.01). Triangular EMFs had a greater effect than sinusoidal EMFs on every indices except for Runx-2 mRNA expression (P < 0.05). These results indicated that while square EMFs promoted proliferation and had no effect on the differentiation of osteoblasts, sinusoidal EMFs inhibited proliferation but enhanced osteogenic differentiation. Triangular EMFs did not affect cell proliferation but induced the strongest osteogenic activity among the four waveforms of EMFs. Thus, the effects of EMFs on proliferation and differentiation of osteoblasts in vitro were dependent on their waveforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.