Abstract

Simple SummaryStudies over the last decade have shown that cells can communicate with neighboring or distant cells through complex packets stuffed with selected proteins, lipids, and nucleic acids, called extracellular vesicles. The wrapped macromolecules are miRNAs, which play a central role in mediating the signal communication of creatural patho/physiological systems. Extracellular vesicle-miRNAs vary among species and different body fluids, such as milk, urine, saliva, cerebrospinal fluid and blood, providing general and individual characters of the vesicles. Cow’s milk is significant in the supply of human nutrition. Therefore, the extracellular vesicle-related physiological process of dairy cows should be of concern. This study clarified the miRNA profiling of bovine serum and found their potential influence on immunity. Moreover, we found that different diets could affect miRNA expression. The results implied that people could implement effective dietary strategies to intervene in the physiological state of animals.Cells can communicate with neighboring or distant cells using extracellular vesicles (EVs), mainly attributed to their containing miRNAs. Given that diets can change host circulatory miRNA profiling, and EVs are the major miRNA carriers in serum, we hypothesized that different diets could change bovine circulating EV-miRNA expression. We partly replaced alfalfa hay with whole cotton seed and soybean hull in the feed formula of the tested cows. Blood EVs were isolated using a polyethylene glycol precipitation kit. Particle size analysis revealed exosomes were dominant in bovine serum EVs. Small RNAs were enriched in bovine serum EVs, including miRNAs, snRNAs, tiRNAs, Cis-regulatory elements, piRNAs, etc. In total, 359 types of Bos taurus miRNAs were identified by Solexa sequencing. Each cow in the control group contained about 244 types of serum EV-miRNAs, compared to 246 types in the tested group. There were 15 immune-related miRNAs in the top 20 serum EV-miRNAs, accounting for about 80% of the total. Seven differently expressed known miRNAs were detected in responding to different diets. An analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed differently expressed miRNAs were related to hormone signal pathways and protein metabolism. Bovine serum EVs are abundant with miRNAs, most of which are immune-related. Different diets eventually change the miRNA profiling of bovine serum EVs.

Highlights

  • By wrapping high-molecular-weight proteins, lipids, and nucleotides, especially miRNAs, extracellular vesicles (EVs) can mediate intercellular communication in a novel way using these contents [1,2]

  • This study shows that bovine serum EVs were abundant with immune-related miRNAs, and that different diets did change the serum EV-miRNA profiling

  • This metric is imprecise when applied to nonforage fiber sources (NFFS), which are high in fiber but rapidly passed from the rumen [13]

Read more

Summary

Introduction

By wrapping high-molecular-weight proteins (e.g., cytosolic, cytoskeletal, plasma membrane and heat shock proteins), lipids (e.g., sphingomyelin, cholesterol, phosphatidylserine and glycosphingolipids), and nucleotides, especially miRNAs, extracellular vesicles (EVs) can mediate intercellular communication in a novel way using these contents [1,2]. EVs are heterogeneous in size (40–2000 nm) and include inward luminal budding of exosomes and outward budding of microvesicles, as well as apoptotic bodies [3]. Blood bathes all the organs in the body and collects and transports many types of biomolecules secreted, excreted, or discarded by different cells [6]. Serum is an aqueous solution and abundant with dissolved albumin, globulin, enzymes, hormones, nutrients, metabolites and various complex organic molecules, including EVs [5]. Enclosed by a strong phospholipid bilayer membrane, the cargos in serum EVs, especially miRNAs, can deliver at great distances without dilution or degradation. Various studies have regarded serum EVs as biomarkers with the ability to identify many diseases—such as cancer, immunological disorders, and other systematic disorders in different organs—due to their containing miRNAs [7]

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call