Abstract
Exhaust gas heat recovery is one of the interesting thermal management strategies that aim to improve the cold start of the engine and thus reduce its fuel consumption. In this work, an overview of the heat exchanger used as well as the experimental setup and the different tests will be presented first. Then numerical simulations were run to assess and valorize the exhaust gas heat recovery strategy. The application was divided into three parts: an indirect heating of the oil with the coolant as a medium fluid, a direct heating of the oil, and direct heating of the oil and the coolant. Different ideas were tested over five different driving cycles: New European driving cycle (NEDC), worldwide harmonized light duty driving test cycle (WLTC), common Artemis driving cycle (CADC) (urban and highway), and one in-house developed cycle. The simulations were performed over two ambient temperatures. Different configurations were proposed to control the engine's lubricant maximum temperature. Results concerning the temperature profiles as well as the assessment of fuel consumption were stated for each case.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have