Abstract

The aim of this study was to compare low-temperature tolerances in different strains of large yellow croaker. Dai Qu (DQ), Min-Yue Dong (MY), and Quan Zhou (NZ) strains of large yellow croaker were subjected to cold stress (8.6°C) for 12h, 24h, 48h, and 96h. Survival rate, histological observation, and antioxidant and energy metabolism indicators were determined. The results showed that compared with the DQ group and MY group, NZ group aggravated hepatic structure, enhanced ROS, lactate, and anaerobic metabolism (PK gene expression and activity), while inhibited ATP, GSH, antioxidant enzymes (mRNA levels and activities of SOD, GPx, and CAT), and aerobic metabolism enzymes (mRNA levels and activities of F-ATPase, SDH, and MDH), indicating the reduction of cold tolerance in the NZ group was closely correlated with the decrement of antioxidative capacity and energy metabolism efficiency. Nrf2 and AMPK gene expressions were correlated with antioxidant and energy metabolism mRNA levels, respectively, suggesting Nrf2 and AMPK might participate in the modulation of target genes during the cold-stress adaptation. In conclusion, low temperature tolerance of fish depended on the antioxidant defense and energy metabolism efficiency, which contributes to understanding the underlying mechanisms of cold adaptation in large yellow croaker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call