Abstract
Large yellow croaker (Larimichthys crocea) is one of the most economically important fish in China. Recently, global climate change has caused more and more intense and extreme low temperature weathers, resulting in huge losses to the large yellow croaker industry. Therefore, it is essential to understand the mechanisms of low-temperature tolerance in large yellow croaker. Here, we conducted an integrative analysis of genome-wide association study (GWAS) and transcriptome analysis to identify candidate variants and reveal the molecular underpinning of cold-stress response in large yellow croaker. A total of 8 significant single nucleotide polymorphisms (SNPs) loci on 6 chromosomes were identified in the GWAS analysis, and 5764 (gill) and 3588 (liver) differentially expressed genes (DEGs) were detected in cold-stressed large yellow croaker, respectively. Further comparative and functional analysis of the candidate genes and DEGs highlighted the importance of pathways/genes related to immune response, cellular stress response, lipid transport, and metabolism in the cold-stress response of large yellow croaker. Our results provide insights into the cold tolerance of large yellow croaker and contribute to genomic-based selection for low-temperature-resistant large yellow croaker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.