Abstract
Transdermal drug delivery is a validated technology that makes a significant contribution to global pharmaceutical care. Since 1980, the sector has seen impressive growth with several commercial successes. The term transdermal drug delivery refers to the delivery of a drug across the layers of skin with the intention of allowing the drug to be absorbed through the skin in a predetermined and controlled rate manner. Skin is one of the largest organs that act as an efficient barrier for drug delivery. The present study focuses on the different approaches of nano-carrier system that delivers the nano-carrier drug across the skin barrier with the help of transdermal delivery system. Nano-carrier drug delivery systems are one of the biggest challenges to deliver drug into systemic circulation by crossing the skin barrier providing a passive drug delivery strategy that is known to be safer and faster than the conventional method. In this review, we describe the diverse types of nano-carriers approaches that have been synthesized for transdermal delivery system includes liposomes, niosomes, ethosomes, solid lipid nanoparticles (SLN), nanostructured lipid carrier (NLC), polymeric nanoparticles, nanocrystals, nanofibers and nanosuspension/nanoemulsion. Several characterization methods of transdermal delivery system have been proposed to control the behavior of nano-carriers, along with in-vitro and in-vivo and other evaluation parameters. It was concluded that the compatibility of nano-carriers with the skin structure should be considered for transdermal nanocarrier delivery systems, which will be the most preferred route for drug delivery in the future as it offers high patient compliance, controlled dosing, low frequency of dosing, high physico-chemical stability and better dermal bioavailability, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.