Abstract

ObjectivesAccurate radiological evaluation of cochlear implants is essential for improvement of devices and techniques and also for assessing the position of the electrodes within the cochlea. Radiological study of implants has focused on isolated temporal bones. Previous studies showed relevant sizes of artefacts (dimensions of the radiological image compared with the actual dimensions of the electrode) in visualization of cochlear implants in computed tomography and cone beam computed tomography (CBCT). In this study, we aimed to obtain CBCT images of cochlear electrodes in isolated temporal bones and in whole heads and to assess the differences in image quality between the two.MethodsCochlear electrodes were implanted in three complete human heads. Radiological examinations were performed using a single CBCT scanner with varying x-ray tube currents, voltages, and rotation angles. The temporal bones were then removed and the same radiological examinations were repeated, with and without the receiver coils. Artefacts from a basal electrode (electrode 9) and an apical electrode (electrode 2) were calculated. These were compared with each other by measuring the diameter of the image of the electrode (electrode inclusive of imaging artefacts) and with the real electrode diameters from the manufacturer's data. Additionally, the radiological diameters (inclusive of artefact) of the electrodes were compared to the cross-sectional diameters of the basal and apical coils of the cochlea at the locations of these two electrodes.ResultsIn comparison to the real electrode diameters, radiological artefact proportions of 51–58% for electrode 9 and 56–61% for electrode 2 were calculated. The differences between whole head images (group 1) and temporal bone images with and without the receiver coil (groups 2 and 3) were highly significant for each protocol (P < 0.001).Discussion and conclusionThese results indicate that it is not possible reliably to determine the exact intracochlear positions of electrodes using CBCT. Imaging of isolated temporal bones produced significantly greater artefacts than imaging of the whole head. Evaluations of image quality based only on results for isolated temporal bones are not transferable to clinical situations, and should be assessed critically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call