Abstract

The climate-driven flooding poses a challenge for phytoremediation of contaminated soil, and the willow (Salix spp.) is a promising candidate coping with climate change and environmental pollution. In this study, uptake and accumulation of copper (Cu), zinc (Zn) and their bioavailability in the rhizosphere across the Salix clones under flooded versus non-flooded (control) conditions were investigated using a pot experiment. The tested Salix clones grew well without showing any toxic symptoms under non-flooded soil condition; in contrast, the clones showed 100% survival for long-term flooding with the development of hypertrophied lenticels and adventitious roots. There were wide clonal variations in biomass production and accumulation of Cu and Zn under flooded and non-flooded conditions. Flooded treatments dramatically decreased aboveground biomass across the Salix clones to different extents compared to the control. The non-flooded clones exhibited relatively high accumulation capacities of Cu and Zn in aerial parts. However, the flooded clones resulted in more substantial reductions in Cu and Zn accumulation in aerial parts, and most of Cu and Zn were limited in roots. EDTA-extractable Cu and Zn predicted well bioavailability of Cu and Zn to the Salix clones under the current condition. It was concluded that the Salix clones exhibited Cu and Zn phytoextraction traits (non-flooding) or phytostabilization traits (flooding), which provides a valuable insight into phytomanagement of contaminated soils by willows subjected to flooding stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call