Abstract

BackgroundGlobal analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance.ResultsWe examine differences in protein and coding sequence conservation between dominant and recessive human disease genes. Our analysis shows that disease genes affected by dominant mutations are more conserved than those affected by recessive mutations. This could be a consequence of the fact that recessive mutations remain hidden from selection while heterozygous. Furthermore, we employ functional annotation analysis and investigations into disease severity to support this hypothesis.ConclusionThis study elucidates important differences between dominantly- and recessively-acting disease genes in terms of protein and DNA sequence conservation, paralogy and essentiality. We propose that the division of disease genes by mode of inheritance will enhance both understanding of the disease process and prediction of candidate disease genes in the future.

Highlights

  • Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases

  • When we plot the frequency distributions of the protein conservation scores of the different sets of genes, we observe that the set of dominant disease genes (DD) has a significantly different distribution to recessive disease genes (DR) (p-value for Kolmogorov-Smirnov (K-S) test = 1.95 × 10-6, Table 2 and Figure 1) and both sets of disease genes are significantly different to the non-disease genes

  • Level of protein conservation of paralogues of dominant and recessive disease genes Previously, it has been reported that genes involved in disease have less conserved paralogues than human genes in general [2], presumably because highly similar paralogues can potentially compensate for a mutated protein [16], in which case a disease might not be observed

Read more

Summary

Introduction

Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. These studies have treated the group of disease genes uniformly, ignoring the type of disease-causing mutations (dominant or recessive). There are more than 1600 human genes known to be associated with particular Mendelian disease phenotypes. The analysis of this group of genes from a global perspective has already revealed interesting insights about the nature of human disease [1,2,3,4,5]. Another study of sequence conservation at the nucleotide level between human and rat found only a small difference (page number not for citation purposes)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.