Abstract

BackgroundMicroglia/macrophages (MG/MΦ) are found in the subretinal space in both mice and humans. Our goal was to study the spatial and temporal distribution, the phenotype, and gene expression of subretinal MG/MΦ in mice with normal retinas and compare them to mice with known retinal pathology.MethodsWe studied C57BL/6 mice with (C57BL/6N), or without (C57BL/6J) the rd8 mutation in the Crb1 gene (which, in the presence of yet unidentified permissive/modifying genes, leads to a retinal degeneration), and documented their fundus appearance and the change with aging. Immunostaining of retinal pigment epithelium (RPE) flat mounts was done for 1) Ionized calcium binding adaptor (Iba)-1, 2) FcγIII/II Receptor (CD16/CD32, abbreviated as CD16), and 3) Macrophage mannose receptor (MMR). Reverse-transcription quantitative PCR (RT-qPCR) was done for genes involved in oxidative stress, complement activation and inflammation.ResultsThe number of yellow fundus spots correlated highly with subretinal Iba-1+ cells. The total number of subretinal MG/MΦ increased with age in the rd8 mutant mice, but not in the wild-type (WT) mice. There was a centripetal shift in the distribution of the subretinal MG/MΦ with age. Old rd8 mutant mice had a greater number of CD16+ MG/MΦ. CD16+ cells had morphological signs of activation, and this was most prominent in old rd8 mutant mice (P <1×10−8 versus old WT mice). Subretinal MG/MΦ in rd8 mutant mice also expressed iNOS and MHC-II, and had ultrastructural signs of activation. Finally, rd8 mutant mouse RPE/ MG/MΦ RNA isolates showed an upregulation of Ccl2, CFB, C3, NF-kβ, CD200R and TNF-alpha. The retinas of rd8 mutant mice showed upregulation of HO-1, C1q, C4, and Nrf-2.ConclusionsWhen compared to C57BL/6J mice, C57BL/6N mice demonstrate increased accumulation of subretinal MG/MΦ, displaying phenotypical, morphological, and gene-expression characteristics consistent with a pro-inflammatory shift. These changes become more prominent with aging and are likely due to the combination of the rd8 mutation and yet unidentified permissive/modulatory genes in the C57BL/6N mice. In contrast, aging leads to a scavenging phenotype in the C57BL/6J subretinal microglia/macrophages.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-014-0221-4) contains supplementary material, which is available to authorized users.

Highlights

  • Microglia/macrophages (MG/MΦ) are found in the subretinal space in both mice and humans

  • There was no difference in the number of fundus spots or the number of ionized calcium binding adaptor (Iba)-1+ subretinal MG/MΦ for mice in the 2 to 4mo versus 5 to 8mo age ranges, or in the 14 to 16mo versus 17 to 20mo age ranges, so mice were age-matched into two groups: 2- to 8-month-old and 14- to 20-month-old

  • When we counted the total number of ionized calcium binding adaptor -1 (Iba-1)+ subretinal cells, including those in the periphery, we found that rd8 mutant mice demonstrated a significant increase with age (P

Read more

Summary

Introduction

Microglia/macrophages (MG/MΦ) are found in the subretinal space in both mice and humans. The blood brain barrier and the blood retina barrier do not allow the immune system an open communication to the brain and retina respectively; this is an important element of the immune privilege in the CNS. These tissues have an extremely delicate homeostasis that needs to be maintained. Microglia have been reported in the subretinal space of patients with retinitis pigmentosa and AMD [8]. The cells were found in areas of localized retinal pigment epithelium (RPE) disruption and/or photoreceptor degeneration

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.