Abstract

We examined the effects of increasing light availability along a vertical gradient within a forest community on the efficiency of leaf nitrogen (N) use in individual trees. The N contents of green and senescent leaves in canopy and subcanopy trees of an evergreen coniferous species, Podocarpus nagi, and an evergreen hardwood species, Neolitsea aciculata, were analyzed in a mixed forest community at Mt Mikasa, Nara City, Japan. The inverse of N concentration (NC) in senescent leaves was used as an index of N use efficiency (NUE) at the leaf‐level. The leaf‐level NUE was higher in canopy trees than in subcanopy trees in both P. nagi and N. aciculata, although soil N mineralization rates around canopy and subcanopy trees did not differ significantly. The NC in green leaves was lower in canopy trees than in subcanopy trees. The ratio of resorbed N in senescent leaves to the N content in green leaves was higher in canopy trees than in subcanopy trees. The higher leaf‐level NUE of canopy trees was partly a result of lower NC in living tissues and partly because of greater N resorption during senescence. The present study suggested that the leaf‐level NUE could be increased in response to an imbalance between soil N and light availability caused by spatial community structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.