Abstract

To compare the performance of multi-echo chemical-shift-encoded (MECSE) magnetic resonance imaging (MRI) proton density fat fraction (PDFF) estimation, considering three different fat frequency peak combinations, for the quantification of steatosis in patients with non-alcoholic fatty liver disease (NAFLD). The present study was a prospective cross-sectional research of 121 patients with metabolic syndrome and evidence of hepatic steatosis on ultrasound, who underwent a 3 T MRI examination. All patients were studied with a multifrequency MECSE sequence. The PDFF was calculated using six peaks (MECSEp123456), three peaks (MECSEp456), and a single peak (MECSEp5) model. The two simpler fat peak models were compared to the six peaks model, which was considered the reference standard. Linearity was evaluated using linear regression while agreement was described using Bland-Altman analysis. The mean age was 47 (±9) years and BMI was 29.9 (±2.9) kg/m2. Steatosis distribution was 15%/31%/54% (S1/S2/S3, respectively). Compared to MECSEp123456, both models provided linear PDFF measurements (R2= 0.99 and 0.97, MECSEp456 and MECSEp5 respectively). Regression slope (0.92; p<0.001) and mean Bland-Altman bias (-1.5%; 95% limits of agreement: -3.19%, 0.22%) indicated minimal underestimation by using PDFF-MECSEp456. Nonetheless, mean differences in PDFF estimations varied from -1.5% (MECSEp456,p=0.006) to -2.2% (MECSEp5,p<0.001) when compared to full six fat frequencies model. Although simpler spectral fat MECSE analysis shows a linear relationship with the standard six peaks model, their variation in estimated PDFF values introduces a low but clinically significant bias in fat quantification and steatosis grading in NAFLD patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call