Abstract

The aim of the study was to determine in patients undergoing gadoxetate disodium (Gx)-enhanced MR exams whether proton density fat fraction (PDFF) estimation accuracy of magnitude-based multi-gradient-echo MRI (MRI-M) could be improved by using high flip angle (FA) on post-contrast images. Thirty-one adults with known or suspected hepatic steatosis undergoing 3T clinical Gx-enhanced liver MRI were enrolled prospectively. MR spectroscopy (MRS), the reference standard, was performed before Gx to measure MRS-PDFF. Low (10°)- and high (50°)-flip angle (FA) MRI-M sequences were acquired before and during the hepatobiliary phase after Gx administration; MRI-PDFF was estimated in the MRS-PDFF voxel location. Linear regression parameters (slope, intercept, average bias, R 2) were calculated for MRS-PDFF as a function of MRI-PDFF for each MRI-M sequence (pre-Gx low-FA, pre-Gx high-FA, post-Gx low-FA, post-Gx high-FA) for all patients and for patients with MRS-PDFF<10%. Regression parameters were compared (Bonferroni-adjusted bootstrap-based tests). Three of the four MRI-M sequences (pre-Gx low-FA, post-Gx low-FA, post-Gx high-FA) provided relatively unbiased PDFF estimates overall and in the low-PDFF range, with regression slopes close to 1 and intercepts and biases close to zero. Pre-Gx high-FA MRI overestimated PDFF in proportion to MRS-PDFF, with slopes of 0.72 (overall) and 0.63 (low-PDFF range). Based on regression bias closest to 0, the post-Gx high-FA sequence was the most accurate overall and in the low-PDFF range. This sequence provided statistically significant improvements in at least two regression parameters compared to every other sequence. In patients undergoing Gx-enhanced MR exams, PDFF estimation accuracy of MRI-M can be improved by using high-FA on post-contrast images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call