Abstract

Magnetic separation in biomedical applications is based on differential magnetophoretic mobility (MM) of microparticulate matter in viscous media. Typically, the difference in MM is obtained by selectively labeling the target cells with superparamagnetic iron oxide nanoparticles (SPIONs). We have measured the MM of monodisperse, polystyrene microspheres (PSMs), with and without attached SPIONs as a model of cell motion induced by nanoparticle magnetization, using variable H field and cell tracking velocimetry (CTV). As a model of paramagnetic microparticle motion, the MM measurements were performed on the same PSMs in paramagnetic gadolinium solutions, and on spores of a prokaryotic organism, Bacillus globigii (shown to contain paramagnetic manganese). The CTV analysis was sensitive to the type of the microparticle magnetization, producing a value of MM independent of the applied H field for the paramagnetic species, and a decreasing MM value with an increasing field for superparamagnetic species, as predicted from theory. The SPION-labeled PSMs exhibited a saturation magnetization above H approximately = 64,000 A m(-1) (or 0.08 tesla). Based on those data, the average saturation magnetizations of the SPIONs was calculated and shown to vary between different commercial sources. The results demonstrate sensitivity of the CTV analysis to different magnetization mechanisms of the microparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call