Abstract
Complex life histories are frequently associated with biological trade-offs, as the use of one trait can decrease the performance of a second trait due to the need to balance competing demands to maximize fitness. Here, we examine growth patterns in invasive adult male northern crayfish (Faxonius virilis) that are indicative of a potential trade-off between energy allocation for body size versus chelae size growth. Northern crayfish undergo cyclic dimorphism, a process characterized by seasonal morphological changes associated with reproductive status. We measured carapace length and chelae length before and after molting and compared these growth increments between the four morphological transitions of the northern crayfish. Consistent with our predictions, reproductive crayfish molting to the non-reproductive form and non-reproductive crayfish molting within the non-reproductive form experienced a larger carapace length growth increment. Reproductive crayfish molting within the reproductive form and non-reproductive crayfish molting to the reproductive form, on the other hand, experienced a larger growth increment in chelae length. The results of this study support that cyclic dimorphism evolved as a strategy for optimizing energy allocation for body and chelae size growth during discrete periods of reproduction in crayfish with complex life histories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.