Abstract

Three-dimensional (3D) culture reflects tumor biology complexities compared with two-dimensional (2D) culture. Thus, 3D culture has attracted attention in cell biology studies including drug sensitivity tests. Herein, we investigated differences in anticancer drug sensitivities between 2D and 3D culture systems in triple-negative breast cancer (TNBC) cell lines. Thirteen TNBC cell lines were maintained in 2D and 3D cultures for 3 days before drug exposure. Cell morphology in the 3D culture was examined by phase-contrast microscopy. Sensitivities to epirubicin (EPI), cisplatin (CDDP), and docetaxel (DTX) were investigated by cell viability assay in both cultures and compared. The IC50s of all 3 drugs were significantly higher in the 3D culture than in the 2D culture in most cell lines. Those were correlated between the 2D and 3D cultures in EPI (R = 0.555) and CDDP (R = 0.955), but not in DTX (R = 0.221). Round spheroid-forming cells were more resistant to agents than grape-like types. In conclusion, 3D culture was more resistant to all 3 drugs than 2D culture in most TNBC cell lines. Sensitivity to CDDP was highly correlated between the 2D and 3D cultures, but not to DTX. 2D culture may be acceptable for sensitivity test for DNA-damaging agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.