Abstract

To detect changes in DNA synthesis during ageing, we compare DNA synthesis in the livers of young and aged rats. As an intermediate between an in vivo system using intact cells and an in vitro system using purified DNA polymerases, isolated nuclei were prepared and used as the machinery for DNA synthesis. The DNA synthesizing capacity of nuclei from regenerating liver was higher than that of nuclei from normal liver and these capacities from liver and regenerating liver were lower in nuclear preparations from aged rats. DNA synthesis using isolated nuclei was stimulated by ATP and the cytoplasmic preparation. The cytoplasmic preparation from regenerating rat liver was found to stimulate DNA synthesis more than the preparation from normal liver. The activity in regenerating liver from young rats was also greater than in that from aged rats. It is well known that DNA replication is inhibited by aphidicolin and DNA repair by ddTTP. We examined the effects of aphidicolin and ddTTP on DNA synthesis using the nuclear system. Surprisingly, the inhibition by aphidicolin was 30% of total DNA synthesis using the nuclear system from young rats. On the other hand, the inhibition by ddTTP was ≈80%. We measured the sizes of the DNA synthesized in the presence of both inhibitors. DNA synthesis was allowed to proceed for 10 min using isolated nuclei from regenerating liver of young rats and the size of the DNA was determined by sucrose density gradient centrifugation analysis. DNA products appeared in two fractions. Following a chase of 50 min in the presence or absence of aphidicolin, the short DNA product grew larger in both cases, although the amount of DNA in the presence of aphidicolin was ≈90% that in its absence. In the same experiment using nuclei from aged rats, the amount in the presence of aphidicolin was ≈60% that in its absence. These results suggest that DNA polymerase β is closely related to abnormal replication when DNA polymerases α and δ are inhibited and that the effect of cytosol on DNA synthesis, as well as the DNA synthetic capacity of isolated nuclei, becomes lower in regenerating rat liver during ageing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call