Abstract

AbstractWild barley (Hordeum sp.) germplasm is rich in genetic diversity and provides a treasure trove of useful genes for crop improvement. We carried out a comprehensive program combining short‐term hydroponic screening via hematoxylin‐staining of root‐regrowth procedure and filter paper–based evaluation of diverse germplasm in response to Al/acid stress using 105 annual Tibetan wild barley and 45 cultivated barley genotypes. Root elongation among the 105 Tibetan wild barley genotypes varied significantly after Al exposure, ranging from 62.9% to 80.0% in variation coefficients and 4.35 to 4.45 in diversity index. These genotypic differences in Al resistance were fairly consistent in both the hydroponic and filter paper–based evaluations: XZ16, XZ166, and XZ113 were selected as Al‐resistant genotypes, and XZ61, XZ45, and XZ98 as Al‐sensitive wild genotypes. Furthermore, significantly lower Al concentrations in roots and shoots were detected in the three selected Al‐resistant genotypes than in the three sensitive genotypes in the filter paper–based experiment. Meanwhile, XZ16 was the least affected by Al toxicity in regard to reduced SPAD value (chlorophyll meter readings), plant height, root length, dry biomass, tillers per plant, and chlorophyll fluorescence (Fv/Fm) in the long‐term hydroponic experiment compared with the Al‐resistant cultivated barley cv. Dayton, while XZ61 had the severest stress symptoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call