Abstract

We study the issue of diffeomorphism symmetry in group field theories (GFT), using the noncommutative metric representation introduced by A. Baratin and D. Oriti [Phys. Rev. Lett. 105, 221302 (2010).]. In the colored Boulatov model for $3d$ gravity, we identify a field (quantum) symmetry which ties together the vertex translation invariance of discrete gravity, the flatness constraint of canonical quantum gravity, and the topological (coarse-graining) identities for the $6j$ symbols. We also show how, for the GFT graphs dual to manifolds, the invariance of the Feynman amplitudes encodes the discrete residual action of diffeomorphisms in simplicial gravity path integrals. We extend the results to GFT models for higher-dimensional $BF$ theories and discuss various insights that they provide on the GFT formalism itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.