Abstract
Exposure of kidney brush-border membrane vesicles to the acylating reagent diethylpyrocarbonate resulted in inactivation of the glucose transporter, as demonstrated by inhibition of sodium-coupled D-glucose transport and phlorizin binding. The transport site(s) was protected against inactivation by the simultaneous presence of sodium ions and D-glucose, and were partially protected by phlorizin. Transport activity was not restored by hydroxylamine; this rules out the possibility of diethylpyrocarbonate interaction with histidine, serine or tyrosine transporter residues. Dithiothreitol, a thiol protector, slightly prevented diethylpyrocarbonate inactivation. It is therefore suggested that (an) amino group(s) in the translocation complex is involved, at the level of the sugar transport site and the preferential protection of D-glucose against diethylpyrocarbonate inactivation related to a conformation change caused by the simultaneous binding of sodium and D-glucose to the cotransporter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have