Abstract
The aim of this study was to investigate the effects of dietary zinc status on spinal cord tissue damage and ZnT3, IL-6 gene expressions in a cuprizone-induced rat Multiple Sclerosis (MS) model. The study was carried out on 46 adult male rats of the genus Wistar. The animals used in the study were divided into 5 groups (G) (Control 6, other groups 10). G1, Control. G2, Sham-MS: Carboxy-methyl-cellulose (KMS) solution in which Cuprizon was dissolved was given to rats by gavage daily for 8 weeks at the rate of 1 % of daily feed consumption. MS was formed by giving 1 % of the daily feed consumption cuprizon in KMS solution by gavage to the animals in G3, 4 and 5 for 8 weeks. G4 was fed with a zinc deficient (50 µg/kg zinc) diet. G5 was given intraperitoneal (ip) zinc sulfate (5 mg/kg/day) supplementation. MS formation in animals was determined by Rotarod tests and Myelin Basic Protein (MBP) gene expression analysis. ZNT3 and IL-6 gene expression levels in spinal cord tissue samples of animals by Real-Time-PCR method; MDA and GSH levels were determined by ELISA method. The highest spinal cord MDA and IL-6 levels were obtained in G3 and G4 (P<0.05). Zinc supplementation in G5 prevented the increase in the mentioned parameters and turned them into control values (P<0.05). The spinal cord GSH and ZnT3 levels of G3 and G4 were lower than all other groups (P<0.05). Zinc supplementation prevented suppression in the same parameters in G5 and reached the control values (P<0.05). The findings of the current study suggest that zinc supplementation in addition to treatment for MS may be beneficial in reducing the severity of the disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have