Abstract

This study was conducted to investigate whether optimal vitamin C (VC) levels can enhance non-specific immune response and antioxidant capacity and reduce mortality of Pacific white shrimp (Penaeus vannamei) post-larvae when infected with Vibrio parahaemolyticus. Six experimental diets were formulated to contain six different VC levels of 0, 40, 80, 120, 160 and 320 mg/kg diet (designated as C0, C40, C80, C120, C160 and C320, respectively). Shrimp post-larvae (39.1 ± 0.47 mg) were randomly distributed to 24 tanks with 40 shrimp per tank. Four replicate groups of shrimp were fed one of the diets for 43 days. VC supplemented groups showed significantly higher growth performance than C0 group. Shrimp fed C120 diet had significantly improved feed utilization efficiency than shrimp fed C0 diet. VC concentrations in hepatopancreas and gills were significantly higher with the increase in dietary VC levels. Optimal dietary VC levels significantly upregulated the expressions of growth and digestive enzyme-related genes such as IGF-1, IGF-BP, amylase, trypsin and chymotrypsin, and also upregulated the expressions of innate immunity and antioxidant-related genes such as prophenoloxidase, crustin, penaiedin-3a, superoxide dismutase, glutathione peroxidase and catalase in hepatopancreas. Shrimp fed C80, C120 and C160 diets showed significantly increased resistance to V. parahaemolyticus than shrimp fed C0 diet. The optimum dietary VC level for the shrimp post-larvae was established to be 80.2 mg/kg diet by a broken-line regression analysis based on the growth. The findings from the challenge test indicated that VC levels over 83.0 mg/kg diet could enhance disease resistance of the shrimp against V. parahaemolyticus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call