Abstract

BackgroundLauric acid (LA), a major, natural, medium-chain fatty acid, is considered an efficient energy substrate for intense exercise and in patients with long-chain fatty acid β-oxidation disorders. However, few studies have focused on the role of LA in exercise performance and related glucolipid metabolism in vivo. ObjectivesWe aimed to investigate the effect of dietary supplementation with LA on exercise performance and related metabolic mechanisms. MethodsMale C57BL/6N mice (14 wk old) were fed a basal diet or a diet containing 1% LA, and a series of exercise tests, including a high-speed treadmill test, aerobic endurance exercises, a 4-limb hanging test, and acute aerobic exercises, were performed. ResultsDietary supplementation with 1.0% LA accelerated the recovery from fatigue after explosive exercise (P < 0.05) and improved aerobic endurance and muscle strength in sedentary mice (P = 0.039). Lauric acid intake not only changed muscle fatty acid profiles, including increases in C12:0 and n–6/n–3 PUFAs (P < 0.001) and reductions in C18:0, C20:4n–6, C22:6n–3, and n–3 PUFAs (P < 0.05) but also enhanced fat mobilization from adipose tissue and fatty acid oxidation in the liver, at least partly via the AMP-activated protein kinase–acetyl CoA carboxylase pathway (P < 0.05). Likewise, LA supplementation promoted liver glyconeogenesis and conserved muscular glycogen during acute aerobic exercise (P < 0.05), which was accompanied by an increase in the mitochondrial DNA copy number and Krebs cycle activity in skeletal muscle (P < 0.05). ConclusionsDietary supplemental LA serves as an efficient energy substrate for sedentary mice to improve aerobic exercise endurance and muscle strength through regulation of glucolipid metabolism. These findings imply that LA supplementation might be a promising nutritional strategy to improve aerobic exercise performance in sedentary people.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.