Abstract

Simple SummaryThis study aims to investigate how epidermal growth factor (EGF) attenuates the effect of lipopolysaccharide (LPS) on the growth performance, nutrient digestibility, microelement absorption of early-weaned pigs. A total of 48 early weaned piglets were randomly distributed to four groups consisting of a 2 × 2 factorial design. The main factors were the level of LPS (HLPS = high LPS: 100 μg/kg body weight; ZLPS = low LPS: 0 μg/kg body weight) and EGF (HEGF = high EGF: 2 mg/kg diet; ZEGF = low EGF: 0 mg/kg diet). Each group had four replicates and each replicate consisted of three piglets. The results showed that HLPS level decreased the growth performance and the apparent digestibility of crude fat, while HEGF level increased the average daily feed intake. The concentration of most microelements in the gastrointestinal tract chyme and feces were increased by HLPS level and decreased by HEGF level. The expression levels of most microelement transport-relative genes in the mucosa of gastrointestinal tissues were decreased by HLPS level and increased by HEGF level. In conclusion, dietary EGF could attenuate the negative effect of LPS exposure on the apparent digestibility of crude fat and microelement absorption through changing the expression levels of microelement transport-relative genes. EGF can be used as an additive to increase the essential trace elements absorption in the early weaning piglets.Epidermal growth factor (EGF) plays an important role in nutrients absorption. However, whether it can be an effective additive to improve the growth performance and nutrients absorption in lipopolysaccharide (LPS) challenged early weaning piglets is still unknown. A 14-days trial was conducted to investigate how EGF attenuates the effect of LPS on the growth performance, nutrient digestibility, microelement absorption of early-weaned pigs, and study the underlying mechanism. A total of 48 early weaned piglets, aged 25 days, were randomly distributed to four groups (control, EGF, LPS and EGF + LPS groups) consisting of a 2 × 2 factorial design. The main factors were the level of LPS (HLPS = high LPS: 100 μg/kg body weight; ZLPS = low LPS: 0 μg/kg body weight) and EGF (HEGF = high EGF: 2 mg/kg diet; ZEGF = low EGF: 0 mg/kg diet). Each group had four replicates and each replicate consisted of three piglets. The results showed that piglets injected with HLPS level significantly decreased the average daily gain (ADG), and significantly increased the feed conversion ratio (FCR) compared with the piglets injected with ZLPS level, while piglets fed HEGF level significantly increased the average daily feed intake (ADFI) compared with the piglets fed ZEGF level (p < 0.05). Piglets injected with HLPS level significantly decreased the apparent digestibility of crude fat compared with the piglets injected with ZLPS level (p < 0.05). Piglets injected with HLPS level significantly increased the concentration of most microelements in the gastrointestinal tract chyme and feces, and significantly decreased the expression levels of most microelement transport-relative genes in the mucosa of gastrointestinal tissues compared with the piglets injected with ZLPS level (p < 0.05). Piglets fed HEGF level significantly decreased the concentration of microelement in the gastrointestinal tract chyme and feces, and significantly increased the expression levels of the microelement transport-relative genes in the mucosa of gastrointestinal tissues compared with the piglets fed ZEGF level (p < 0.05). In conclusion, dietary EGF could attenuate the negative effect of LPS exposure on the apparent digestibility of crude fat and microelement absorption of early-weaning piglets. EGF and LPS influenced the absorption of essential trace element through changing the expression levels of microelement transport-relative genes in the mucosa of gastrointestinal tissues. In the early weaning piglets, EGF can be used as an additive to increase the essential trace elements absorption.

Highlights

  • Essential trace elements are the indispensable nutrients for animals, and especially Cu, Fe, Zn, and Mn are required for the normal growth, development, and many physiological functions in animals [1,2,3,4]

  • Our results indicated that injected HLPS level significantly decreased the average daily gain (ADG) and significantly increased the feed conversion ratio (FCR), and dietary HEGF level significantly increased the average daily feed intake (ADFI) of early-weaned piglets, which were in agreement with the previous studies

  • Our results indicated that dietary HEGF level had no significant influence on the apparent digestibility, which was in agreement with the previous studies

Read more

Summary

Introduction

Essential trace elements are the indispensable nutrients for animals, and especially Cu, Fe, Zn, and Mn are required for the normal growth, development, and many physiological functions in animals [1,2,3,4]. Because of rapid and dramatic change of the living environment and exposure to the bacteria [11], early weaning piglets suffer from stress, which reduces the growth performance and feed intake [12] and decreases the nutrient digestibility through digestive disorders [13]. It leads to the resources waste and environment pollution and limits the sustainable development of animal husbandry. Due to its good repeatability, the LPS stress mode is widely used in research

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call