Abstract

Genetic engineering, also called genetic modification, is facing with growing demands of aquaculture and aquatic products. Although various genetically modified (GM) aquatics have been generated, it is important to evaluate biosafety of GM organisms on the human health before entering into our food chain. For this purpose, we establish a zebrafish wild adult feeding Flk1-transgenic larvae model to examine the predatory fish's histology in multiple tissues, and the global gene expression profile in the liver. 180 days of feeding trial show that there are no significantly morphological changes in intestine, liver, kidney, and sex gonads between fish fed with Flk1 transgenic fish diet (TFD) and fish fed with regular food meal (RFM). However, a characteristic skin spot and autofluorescence increase in the theca of follicle are observed in F1 generation of TFD fish. Liver RNA-sequencing analyses demonstrate that 53 out of 56712 genes or isoforms are differentially transcribed, and mostly involved in proteolysis in extracellular region. According to GO enrichment terms these deregulated genes function in catalytic activity, steroid storing, lipid metabolic process and N-Glycan biosynthesis. These results suggest that a long term of Flk1-transgenic fish diet could alter certain metabolic pathways and possibly cause related tissue deformation. Compared to the previous reports, our feasible transgenic dietary assess system could evaluate subchronic and potential health impact of transgenic fish diet by combining multi-tissue histology and liver transcriptome analyses.

Highlights

  • The demand for aquatic products is increasingly growing over the world

  • We projected a 180 days of feeding trial to test whether eating the transgenic fish would induce any dietary harm

  • The feeding trial started at the juvenile period, 30–40 day post-fertilization, when the AB line zebrafish were developed big enough to eat the transgenic larvae

Read more

Summary

Introduction

The demand for aquatic products is increasingly growing over the world. To increase the aquatic production, scientists have made tremendous efforts to increase growth rate, tolerance to different environment, fresh quality, and disease resistance (Maclean, 2003; Bostock et al, 2010). Since growth hormone (GH) was firstly integrated into the goldfish (Zhu et al, 1985), the genetically modified (GM) techniques have been widely applied in aquaculture experiments. More than 35 different species of fish have been tested in gene transfer studies, such as the nile tilapia Oreochromis niloticus (Guillén et al, 1999) and carp Cyprinus carpio (Yong et al, 2012). As the other GM organisms are hot and controversial topics, potential toxic effects of transgenic aquatics become concerned. Toxicity study is considered to be a reliable method for safety assessment

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call