Abstract

Listed as endocrine-disrupting chemicals, benzophenone (BP) and its nine analogues (BPs) are an emerging group of contaminants. The migration of BPs from ultraviolet inks to food has been investigated in many studies; however, few studies have investigated BPs in foods and the risks of human exposure to BPs. We validated a trace and multi-residue method for simultaneously determining 10 BPs, including BP, BP-1, BP-2, BP-3, BP-8, 4-MBP, 2-OHBP, 4-OHBP, M2BB, and PBZ. Eighty-one bread samples were analyzed using stable isotope labeling and ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with solid-liquid extraction. We determined the estimated daily intake of BPs, non-cancer risks, and lifetime cancer risks (LTCRs) from daily bread consumption for seven age groups using a Monte Carlo simulation. The method demonstrated robust linearity (R2 ≥ 0.991), low limits of detection (0.04-2 ng/g), and satisfactory precision. The intra- and interday relative standard deviation ranges were 0.6%-9% and 3%-20%, respectively. BP, 4-MBP, 2-OHBP, BP-1, and BP-3 were detected in 97%, 67%, 59%, 24%, and 23% of the samples, respectively. 2-OHBP had the highest mean (range) value of 18.3 (<LOD-201.6) ng/g. The results demonstrated that the 0-3 year group had the highest LTCRs (2.6 × 10-6) and hazard indices [HIs] (5.4 × 10-2). The LTCRs were lower than 10-5, and the HIs were lower than 1 in seven age groups. This suggests that exposure to BPs from bread consumption is safe and acceptable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call