Abstract

The evidence that omega-3 (n-3) and -6 (n-6) polyunsaturated fatty acids (PUFAs) have differential effects on ovarian function, oocytes and embryo quality is inconsistent. We report on the effects of n-3 versus n-6 PUFA-enriched diets fed to 36 ewes over a 6-week period, prior to ovarian stimulation and follicular aspiration, on ovarian steroidogenic parameters and embryo quality. Follicle number and size were unaltered by diet, but follicular-fluid progesterone concentrations were greater in n-3 PUFA-fed ewes than in n-6 PUFA-fed ewes. The percentage of saturated FAs (mostly stearic acid) was greater in oocytes than in either granulosa cells or plasma, indicating selective uptake and/or de novo synthesis of saturated FAs at the expense of PUFAs by oocytes. High-density lipoproteins (HDLs) fractionated from sera of these ewes increased granulosa cell proliferation and steroidogenesis relative to the FA-free BSA control during culture, but there was no differential effect of n-3 and n-6 PUFAs on either oestradiol or progesterone production. HDL was ineffective in delivering FAs to embryos during culture, although n-6 PUFA HDL reduced embryo development. All blastocysts, irrespective of the treatment, contained high levels of unsaturated FAs, in particular linoleic acid. Transcripts for HDL and low-density lipoprotein (LDL) receptors (SCARB1 and LDLR) and stearoyl-CoA desaturase (SCD) are reported in sheep embryos. HDL reduced the expression of transcripts for LDLR and SCD relative to the BSA control. The data support a differential effect of n-3 and n-6 PUFAs on ovarian steroidogenesis and pre-implantation development, the latter in the absence of a net uptake of FAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.