Abstract

Studies were conducted to determine the importance of de novo cholesterol synthesis and cholesterol side-chain cleavage enzyme in the action of IGF-I in bovine granulosa and thecal cells. Granulosa and thecal cells from bovine follicles were cultured for 2 days in 10% fetal calf serum and then treated with luteinizing hormone (100 ng/ml) and IGF-I (0 or 100 ng/ml) for an additional 2 days in serum-free medium. During the last 24 h of treatment, cells were concomitantly treated with simvastatin (0, 0.5 or 5 micrograms/ml) or 25-hydroxycholesterol (0 or 10 micrograms/ml). Simvastatin, a potent inhibitor of the key enzyme controlling de novo cholesterol synthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, completely inhibited (P < 0.05) progesterone production by granulosa cells and progesterone and androstenedione production by thecal cells. Simvastatin also inhibited (P < 0.05) granulosa cell and thecal cell proliferation. Concomitant treatment with mevalonate, an immediate product of HMG-CoA reductase, attenuated the inhibitory effect of simvastatin on progesterone and androstenedione production by thecal cells and blocked the inhibitory effect of simvastatin on cell proliferation. The addition of 25-hydroxycholesterol, a substrate for cholesterol side-chain cleavage enzyme, had no effect (P > 0.10) on IGF-I-stimulated progesterone or androstenedione production by thecal cells and actually inhibited (P < 0.05) IGF-I-stimulated progesterone production by granulosa cells. These results provide indirect evidence indicating that stimulation of HMG-CoA reductase is an important locus of IGF-I action in bovine granulosa and thecal cells, whereas IGF-I has little or no effect on side-chain cleavage enzyme activity in these same cell types under the culture conditions employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call