Abstract
We used carbon and nitrogen isotopes measured in hair to compare the diets of 2 sympatric species of wild mice, Peromyscus californicus and P. boylii, in Santa Cruz County, California. The ability of these 2 Peromyscus species to coexist is thought to be the result of spatial partitioning through canopy plant associations as well as possible dietary niche partitioning. We used stable isotope analysis to determine the trophic level at which each species is feeding and stable isotope mixing models to estimate dietary contributions of various arthropod and plant-derived food sources. We found P. californicus to be omnivorous, specializing mainly on arthropods and consistently feeding at a higher trophic level than P. boylii. P. boylii is omnivorous as well, but specializes mainly on tanoak (Notholithocarpus densiflorus) acorns. Dietary niche partitioning appears to be seasonal; in the fall, partitioning breaks down to some degree, likely because food is so abundantly available, and both species consume a larger, overlapping array of acorns and arthropods. These findings coupled with other studies on habitat niche partitioning present a clearer picture of how these 2 sympatric species can coexist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.