Abstract
BackgroundDietary n-3 polyunsaturated fatty acid (PUFA) deprivation increases expression of arachidonic acid (AA 20:4n-6)-selective cytosolic phospholipase A2 (cPLA2) IVA and cyclooxygenase (COX)-2 in rat brain, while decreasing expression of docosahexaenoic acid (DHA 22:6n-3)-selective calcium-independent iPLA2 VIA. Assuming that these enzyme changes represent brain homeostatic responses to deprivation, we hypothesized that dietary n-6 PUFA deprivation would produce changes in the opposite directions. MethodsBrain expression of PUFA-metabolizing enzymes and their transcription factors was quantified in male rats fed an n-6 PUFA adequate or deficient diet for 15weeks post-weaning. ResultsThe deficient compared with adequate diet increased brain mRNA, protein and activity of iPLA2 VIA and 15-lipoxygenase (LOX), but decreased cPLA2 IVA and COX-2 expression. The brain protein level of the iPLA2 transcription factor SREBP-1 was elevated, while protein levels were decreased for AP-2α and NF-κB p65, cPLA2 and COX-2 transcription factors, respectively. ConclusionsWith dietary n-6 PUFA deprivation, rat brain PUFA metabolizing enzymes and some of their transcription factors change in a way that would homeostatically dampen reductions in brain n-6 PUFA concentrations and metabolism, while n-3 PUFA metabolizing enzyme expression is increased. The changes correspond to reported in vitro enzyme selectivities for AA compared with DHA.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have