Abstract

The present work aimed to compare the effect of dietary flax with other oil sources on rooster sperm membranes and on semen characteristics. White Leghorn roosters (16 per diet) were fed 1 of 4 treatments: control diet (CON), or a diet containing corn oil (CORN), fish oil (FISH), or flax seed (FLAX) as the lipid source. Semen from 4 birds (30 wk old) of each treatment was pooled, the sperm head (HM) and body membranes (BM) were isolated, and lipids were extracted and analyzed. Aspects of lipid composition tested were as follows: percentage of individual fatty acids (C14:0 to C24:1) in total fatty acids, percentage of fatty acid categories [saturated, monounsaturated, polyunsaturated (PUFA), n-3 and n-6 PUFA, and n-6:n-3 ratio] within total fatty acids, and percentage of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidylserine, and sphingomyelin] in total phospholipids. Sperm characteristics evaluated were as follows: volume, concentration, viability, percentage of motile cells, average path velocity, track speed, progressive velocity, lateral head displacement, straightness, and linearity. Diet did not affect membrane phospholipid ratios in either membrane but modified major fatty acids within certain phospholipids. Birds fed FISH and CORN showed, respectively, the highest and the lowest n-3 in sperm, causing reciprocal significant changes in n-6:n-3 ratio. Feeding FLAX caused intermediate effects in n-3, with values significantly lower than FISH but higher than CORN in HM (PC, PE, and phosphatidylinositol) and PC in BM (P < 0.05). In the PE phospholipids, FISH, followed by FLAX, increased n-3 in BM and decreased n-6 PUFA in HM. Sperm concentration was specifically correlated with the amount of 20:4n-6 in FLAX and 22:4n-6 in CON. In FLAX diets, straightness correlated with C18:0, n-3, and n-6:n-3 ratio. Diets containing distinct lipid sources differentially modify the lipid contents of HM and BM, with minor effects on sperm characteristics. Flax seed produced changes similar to fish oil and could be used as a substitute.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.