Abstract

In tubules from the terminal segment of the inner medullary collecting duct (tIMCD) from rats with chronic metabolic acidosis, our laboratory has shown that bicarbonate absorption (JtCO2) is inhibited by removal of K+ from the luminal fluid or by the addition of Sch-28080 to the perfusate. The present study asked whether total and/or Sch-28080-sensitive JtCO2 is regulated by changes in systemic K+ homeostasis. Rat tIMCD tubules were perfused in vitro in symmetrical, HCO-3/CO2-buffered solutions containing 10 mM KCl + 6 mM NH4Cl. Total and Sch-28080-sensitive JtCO2 were measured in rats with varying K+ intake. In K+-replete rats, baseline JtCO2 was 2.1 +/- 0.3 pmol . mm-1 . min-1 (n = 6). In rats fed a K+-deficient diet for 3 days, JtCO2 was 5.4 +/- 0.7 pmol . mm-1 . min-1 (n = 16, P < 0. 05). To determine the mechanism for the increase in HCO-3 absorption observed with K+ restriction, the Sch-28080-sensitive component of JtCO2 was measured in each treatment group. Following the addition of Sch-28080 (10 microM) to the perfusate, a 40% reduction in JtCO2 was observed in K+-restricted rats. JtCO2 was not reduced following the addition of Sch-28080 in rats with normal K+ intake. Because Sch-28080-sensitive JtCO2 was increased in K+-restricted rats, Sch-28080-sensitive JtCO2 was studied further in tIMCD tubules from rats in this treatment group. In K+-restricted rats, JtCO2 decreased by 20% following the addition of 5 mM ouabain to the perfusate. This ouabain-induced decline in JtCO2 was observed both in the presence and in the absence of Sch-28080. We conclude that total and Sch-28080-sensitive net acid secretion is increased with dietary K+ restriction. However, since approximately 50% of JtCO2 is insensitive to both Sch-28080 and ouabain, future studies will be necessary to define other mechanisms of luminal acidification in the rat tIMCD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.