Abstract
Standard feeds are imbalanced in term of n-6/n-3 polyunsaturated fatty acids (PUFA) ratio, with a low proportion of the latter. The reproductive system appears to be strongly affected by administration of n-3 PUFA, and ingredients rich in α-linolenic acid (ALA; i.e. vegetable sources) or EPA and DHA acids (i.e. fish oil) can be included in animal diets to balance PUFA intake. The aim of this study was to evaluate the effect of dietary supplementation with flaxseed (ALA) or fish oil (EPA and DHA) on PUFA metabolism in rabbit does. A total of 60 New Zealand White female rabbits were assigned to three experimental groups: control group, FLAX group fed 10% extruded flaxseed and FISH group fed 3% fish oil. Blood, milk, liver and ovaries were collected from the does to assess the lipid composition; furthermore, FADS2 gene expression was assessed in liver and ovary tissues. Reproductive performance of does was also recorded. The fertility rate and number of weaned rabbits improved with n-3 dietary supplementation: does at first parity showed the lowest reproductive results, but the administration of n-3 reduced the gap between primiparous and multiparous does. Feed consumption and milk production were not affected by the feeding regime. The fatty acid composition of milk, plasma, liver and ovaries were widely influenced by diet, showing higher concentrations of n-3 long-chain PUFA (LCP) in does fed with n-3 enriched diets. FISH diet resulted in the highest n-3 LCP enrichment, whereas in the FLAX group, this increase was lower. Blood and milk showed low levels of LCP, whereas liver and ovaries were the main sites of n-3 LCP synthesis and accumulation. Accordingly, although the liver is the main metabolic centre for LCP synthesis, ovaries also have a prominent role in LCP generation. FADS2 expression in liver and ovary tissue was downregulated by FISH administration. In conclusion, the enrichment of diets with n-3 PUFA could be an effective strategy for improving the reproductive performance of does.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have