Abstract
Non-sugar components of kiwifruit reduce the amplitude of the glycaemic response to co-consumed cereal starch. We determined the relative contribution of different non-sugar kiwifruit components to this anti-glycaemic effect. Healthy participants (n = 9) ingested equal carbohydrate meals containing 20 g starch as wheat biscuit (WB, 30 g), and the sugar equivalent of two kiwifruit (KFsug, 20.4 g), either intrinsic or added as glucose, fructose and sucrose (2:2:1). The meals were WB+KFsug (control, no non-sugar kiwifruit components), WB + whole kiwifruit pulp (WB+KF), WB + neutralised kiwifruit pulp (WB+KFneut), WB + low-fibre kiwifruit juice (WB+KFjuice) and WB+KFsug + kiwifruit organic acids (WB+KFsug+OA). All meals were spiked with 100 mg sodium [1-13C] acetate to measure intestinal absorption. Each participant ingested all meals in random order. Blood glucose and breath 13CO2 were measured at ingestion and at 15 min intervals up to 180 min. Compared with WB+KFsug, whole kiwifruit pulp (WB+KF) almost halved glycaemic response amplitude (p < 0.001), reduced incremental area under the blood glucose response curve (iAUC) at 30 min (peak) by 50% (p < 0.001), and averted late postprandial hypoglycaemia. All other treatments suppressed response amplitude half as much as whole kiwifruit and averted acute hypoglycaemia, with little effect on iAUC. Effects on 13CO2 exhalation paralleled effects on blood glucose (R2 = 0.97). Dietary fibre and organic acids contributed equally to the anti-glycaemic effect of kiwifruit by reducing intestinal absorption rate. Kiwifruit flesh effectively attenuates glycaemic response in carbohydrate exchange, as it contains fructose, dietary fibre and organic acids.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have