Abstract

BackgroundThe discovery of N‑acylethanolamines (NAEs) has prompted an increase in research aimed at understanding their biological roles including regulation of appetite and energy metabolism. However, a knowledge gap remains to understand the effect of dietary components on NAE levels, in particular, heterogeneity in dietary fatty acid (DFA) profile, on NAE levels across various organs. ObjectiveTo identify and elucidate the impact of diet on NAE levels in seven different tissues/organs of male hamsters, with the hypothesis that DFA will act as precursors for NAE synthesis in golden Syrian male hamsters. MethodA two-month feeding trial was performed, wherein hamsters were fed various dietary oil blends with different composition of 18-C fatty acid (FA). ResultsDFA directly influences tissue FA and NAE levels. After C18:1n9-enriched dietary treatments, marked increases were observed in duodenal C18:1n9 and oleoylethanolamide (OEA) concentrations. Among all tissues; adipose tissue brown, adipose tissue white, brain, heart, intestine-duodenum, intestine-jejunum, and liver, a negative correlation was observed between gut-brain OEA concentrations and body weight. ConclusionDFA composition influences FA and NAE levels across all tissues, leading to significant shifts in intestinal-brain OEA concentrations. The endogenously synthesized increased OEA levels in these tissues enable the gut-brain-interrelationship. Henceforth, we summarize that the brain transmits anorexic properties mediated via neuronal signalling, which may contribute to the maintenance of healthy body weight. Thus, the benefits of OEA can be enhanced by the inclusion of C18:1n9-enriched diets, pointing to the possible nutritional use of this naturally occurring bioactive lipid-amide in the management of obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call