Abstract

The Pacific oyster Crassostrea gigas is the world’s most cultivated oyster and seed supply is heavily reliant on hatchery production where recurring mass mortality events are a major constraint. Outbreaks of bacterial infection via microalgal feed are frequently implicated in these mortalities. This study assessed the effects of feeding compromised microalgae to developing oyster larvae. Intentionally ‘stressed’ (high pH) or non-stressed microalgae were fed to 11 day-old oyster larvae at two feeding rations for 96 h, followed by a recovery period. Biological endpoints of larval performance were measured following the 96 h exposure and subsequent recovery. Bacterial communities associated with the microalgae feed, rearing seawater, and the oyster larvae, were characterized and correlated with effects on oyster fitness parameters. Feeding stressed algae to oyster larvae for 96 h increased the occurrence of deformities (>70% vs. 20% in control), reduced feeding and swimming ability, and slowed development. Following the recovery period, fewer larvae reached pediveliger stage (2.7% vs. 36% in control) and became spat (1.5% vs. 6.6% in control). The quantity of stressed algae supplied to oyster larvae also influenced overall larval performance, with high feeding rations generally causing greater impairment than low rations. Bacterial profiling using 16S rRNA showed that most bacterial families characterized in larval tissue were also present in larval rearing seawater and in the microalgae feed (98%). The rearing seawater showed the highest bacterial richness compared to the larval and the microalgal compartments, regardless of feeding regime. In larval tissue, bacterial richness was highest in stressed and high-feed treatments, and negatively correlated with larval fitness parameters. These results suggest significant dysbiosis induced by compromised feed and/or increased feed ration. Several bacterial genera (e.g., Halomonas, Marinomonas) were strongly associated with impaired larval performance while the presence of genera in larvae including Vibrio was closely associated with overfeeding. Our research demonstrated that metabarcoding can be effectively used to identify microbiota features associated with larval fitness.

Highlights

  • The Pacific oyster, Crassostrea gigas, is a major commercial species and the most cultivated oyster globally with a production value estimated at US$ 1.24 billion p.a. (Houston et al, 2020)

  • The aims of this study were to (i) evaluate the potential effects of feeding compromised microalgae to early life stages of Pacific oysters by assessing their larval performance and spat yield; (ii) characterize and compare the bacterial communities associated with the microalgal feed, oyster larvae and the seawater in which larvae were reared, and (iii) identify microbiota features associated with reduced larval development and yield

  • Broodstock Conditioning, Spawning, and Incubation Twenty-four adult Pacific oysters, Crassostrea gigas, of wild origin were conditioned for 10 weeks at 22◦C (± 1) and fed ad libitum with a mixture of naturally occurring phytoplankton species bloomed by fertilized eutrophic ponds and continuously cultured monospecific algae (Tisochrysis lutea, CS-177, and Chaetoceros muelleri, CS-176)

Read more

Summary

Introduction

The Pacific oyster, Crassostrea gigas, is a major commercial species and the most cultivated oyster globally with a production value estimated at US$ 1.24 billion p.a. (Houston et al, 2020). In a recent study by Rolton et al (2020), in which two commercially important species for aquaculture, Tisochrysis lutea (T-Iso) and Chaetoceros calcitrans, were reared in a stressful environment by intentionally subjecting the cultures to high-pH conditions, Pulse Amplitude Modulation (PAM) fluorometry and flow cytometry (FCM) were successfully used to identify a variety of indicators of algal function, including photosynthetic parameters and morphological changes. This allowed earlier detection of ‘compromised’ algae compared to traditional algal health measurements (Rolton et al, 2020)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call