Abstract

To investigate the effect of dietary betaine supplementation on growth performance, meat quality, muscle anaerobic glycolysis and antioxidant capacity of transported broilers, 1-day-old partridge-shank-broiler-chickens (n = 192) were randomly divided into three groups for a 50-day feeding trial. The broilers in the control group were fed a basal diet, and experienced 0.75-h transport before slaughter. The broilers in the other three groups were fed a basal diet supplemented with 0, 500 or 1000 mg kg-1 betaine, respectively, and experienced 3-h transport before slaughter (T, T + BET500 or T + BET1000 groups). Dietary betaine supplementation increased (P < 0.05) average daily gain of broilers, and feed conversion ratio was also improved (P < 0.05) by 500 mg kg-1 betaine supplementation. Compared with the control group, 3-h transport increased (P < 0.05) live weight loss, serum corticosterone and cortisol concentrations, as well as muscle lactate and malondialdehyde (MDA) contents, and decreased (P < 0.05) muscle pH24h , glycogen content and total superoxide dismutase activity. Compared with the T group, betaine supplementation decreased (P < 0.05) serum corticosterone and cortisol concentrations and muscle MDA content, and increased (P < 0.05) muscle a*24 h . In addition, 1000 mg kg-1 betaine supplementation further decreased (P < 0.05) muscle drip loss, lactate content and lactate dehydrogenase activity, and increased (P < 0.05) muscle glutathione content and glutathione peroxidase activity. Betaine supplementation not only improved growth performance of broilers, but also alleviated meat quality deterioration of transported broilers through altering muscle anaerobic glycolysis and antioxidant capacity. © 2020 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.