Abstract
BackgroundPrevious research has shown that dietary supplementation of Bacillus spp. probiotics exerts beneficial effects on animals’ growth. However, limited studies have evaluated the efficacy of Bacillus spp. on weaned pigs and their effects on host gut health and microbiome, and systemic immunity using a disease challenge model. The objective of this experiment was to investigate the effects of two Bacillus spp. strains (Bacillus subtilis DSM 32540 and Bacillus pumilus DSM 32539) on growth performance, diarrhea, intestinal health, microbiome, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC).ResultsPigs in PRO1 (Bacillus subtilis DSM 32540) had greater (P < 0.05) body weight on d 7 and 14 PI, greater (P < 0.05) ADG from d 0 to 7 and d 7 to 14 PI, compared with pigs in CON (Control). Pigs in PRO1 had milder (P < 0.05) diarrhea on d 2 and 3 PI compared with pigs in CON. However, no differences were observed in growth performance and diarrhea score between PRO2 (Bacillus pumilus DSM 32539) and CON groups. Supplementation of PRO1 decreased (P < 0.05) lymphocyte counts on d 7 and 14 PI, compared with CON. Supplementation of PRO1 and PRO2 both reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 21 PI. Pigs in PRO2 had greater (P < 0.05) goblet cell number and sulfomucin percentage in duodenal villi and greater (P < 0.05) sialomucin percentage in jejunal villi than pigs in CON. Supplementation of PRO1 up-regulated (P < 0.05) MUC2 gene expression in jejunal mucosa and reduced (P < 0.05) PTGS-2 and IL1B gene expression in ileal mucosa on d 21 PI, compared with CON. Pigs in PRO1 had reduced (P < 0.05) relative abundance of families Lachnospiraceae, Peptostreptococcaceae and Pasteurellaceae in the ileum.ConclusionsSupplementation of Bacillus subtilis DSM 32540 improved growth performance, alleviated diarrhea severity, enhanced gut health, and reduced systemic inflammation of weaned pigs infected with ETEC F18. Although Bacillus pumilus DSM 32539 was able to alleviate systemic inflammation, it had limited impacts on growth performance and severity of diarrhea of ETEC F18 challenged weaned pigs.
Highlights
Previous research has shown that dietary supplementation of Bacillus spp. probiotics exerts beneficial effects on animals’ growth
Growth performance and diarrhea score All animals were healthy before enterotoxigenic Escherichia coli (ETEC) challenge
A total of 8 pigs were removed from the whole data set due to health issues after ETEC infection or as outliers, including two pigs at the CON group, two pigs at the PRO1 group, and four pigs at the PRO2 group
Summary
Previous research has shown that dietary supplementation of Bacillus spp. probiotics exerts beneficial effects on animals’ growth. Limited studies have evaluated the efficacy of Bacillus spp. on weaned pigs and their effects on host gut health and microbiome, and systemic immunity using a disease challenge model. The objective of this experiment was to investigate the effects of two Bacillus spp. strains (Bacillus subtilis DSM 32540 and Bacillus pumilus DSM 32539) on growth performance, diarrhea, intestinal health, microbiome, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC). Post-weaning diarrhea is a commonly occurring and economically important disease in the swine industry worldwide [1]. Infeed antibiotics were routinely added to swine diet as prophylactic treatment at times of stress such as post weaning period. In order to ensure animal welfare and maintain animal productivity, it is necessary to develop and investigate alternatives to antibiotics
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have