Abstract

The number of obese people is increasing dramatically worldwide, and one of the major causes of obesity is excess energy due to high-fat diets. Several studies have shown that reducing food and energy intake represents a key intervention or treatment to combat overweight/obesity. Here, we conducted a 12-week energy-restricted dietary intervention for high-fat diet-induced obese mice (C57BL/6J) to investigate the effectiveness of diet change in improving obesity. The results revealed that the diet change from HFD to NFD significantly reduced weight gain and subcutaneous adipose tissue weight in high-fat diet-induced obese mice, providing scientific evidence for the effectiveness of diet change in improving body weight and fat deposition in obese individuals. Regarding the potential explanations for these observations, weight reduction may be attributed to the excessive enlargement of adipocytes in the white adipose tissue of obese mice that were inhibited. Diet change significantly promoted lipolysis in the adipose tissue (eWAT: Adrb3, Plin1, HSL, and CPTA1a; ingWAT: CPT1a) and liver (reduced content of nonesterified fatty acids), and reduced lipogenesis in ingWAT (Dgat2). Moreover, the proportion of proliferative stem cells in vWAT and sWAT changed dramatically with diet change. Overall, our study reveals the phenotypic, structural, and metabolic diversity of multiple tissues (vWAT and sWAT) in response to diet change and identifies a role for adipocyte stem cells in the tissue specificity of diet change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.