Abstract

Diet and growth of leaf-shredding caddisfly larvae, Pycnopsyche spp.,were examined in streams draining a reference catchment and a 16-year-oldclear-cut (disturbed) catchment at Coweeta Hydrologic Laboratory insouthwestern North Carolina, USA. The objective was to explain why shredderproduction is higher in the disturbed streams despite the larvae having lessfood (i.e., leaves) available. We predicted larvae would grow faster onfast-decaying leaf material representative of the disturbed streams. Larvaeconsumed mostly leaf detritus in three streams draining each catchment overthree seasons (fall, winter, and spring), which showed larvae did notconsume higher quality foods (e.g., algae and animal material) in disturbedstreams. When fed 2-month-old conditioned black birch (Betula lenta L.) (afast-decaying leaf species) and white oak (Quercus alba L.) (a slow-decayingleaf species) leaves in the laboratory, larvae grew significantly faster onthe birch leaves. However, when larvae were fed the same leaf types after3-months conditioning, larvae grew significantly faster on oak leaves. Afield growth experiment conducted for 42 d using mixed-species leaf dietsrepresentative of each catchment and initially conditioned for 2 monthsfound that Pycnopsyche grew significantly better on the diet representativeof the reference catchment. The ’reference diet‘ contained more oak leaveswhich apparently became a more acceptable food as the experiment proceeded.High shredder production in the disturbed streams could not be explained byhigh Pycnopsyche growth rates on fast-decaying leaves. Instead, larvae grewbetter on leaves that were apparently conditioned optimally regardless ofconditioning rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call