Abstract

Existing generator parameterization methods, typically developed for large turbine generator units, are difficult to apply to small kW-level diesel generators in microgrid applications. This article presents a model parameterization method that estimates a complete set of kW-level diesel generator parameters simultaneously using only load-step-change tests with limited measurement points. This method provides a more cost-efficient and robust approach to achieve high-fidelity modeling of diesel generators for microgrid dynamic simulation. A two-stage hybrid box-constrained Levenberg-Marquardt (H-BCLM) algorithm is developed to search the optimal parameter set given the parameter bounds. A heuristic algorithm, namely Generalized Opposition-based Learning Genetic Algorithm (GOL-GA), is applied to identify proper initial estimates at the first stage, followed by a modified Levenberg-Marquardt algorithm designed to fine tune the solution based on the first-stage result. The proposed method is validated against dynamic simulation of a diesel generator model and field measurements from a 16kW diesel generator unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.