Abstract

The behavior of a CI (Compression Ignition) engine was analyzed when ZnO (Zinc Oxide) nanoparticles were added, in proportions of 144, 233 and 377 ppm. The tests were developed using diesel fuel with a concentration of 300 ppm sulfur to analyze consumption and how it influences pollutant emissions and engine performance. The tests used a 2.6 ID (direct injection) 4-cylinder in-line truck, with an output of 85.57 HP at 4000 rpm and a torque of 167 Nm at 2200 rpm, a gas analyzer, an opacimeter and a dynamometer. The tests were carried out at an altitude of 2200 m.a.s.l., with an atmospheric pressure of 78.5 kPa. Obtained results in terms of torque indicate an increase of 3.82%, while in power, an increase of 3.46% is evident with the addition of ZnO to diesel; in terms of polluting emissions of CO, a decrease of 35% was obtained. As for CO2, the results showed a decrease of 4%. HC decreased from 86% to 59%. O2 decreased by 1%. The addition of nanoparticles showed no improvement in the mitigation of NOx. Finally, the opacity test shows a decrease of 39.67%. The applicability of this study corroborates that the addition of nanoparticles to diesel fuel mitigates pollutant emissions without significantly sacrificing the performance of CI engines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call