Abstract

Based on the low temperature oxidation mechanism of alkane and the assumption that alkyl cracks into ethylenes and methyl directly at high temperature, a reduced mechanism of n-heptane oxidation containing 19 species and 21 reactions is achieved. The calculated ignition delays fit the experimental data reasonably well. Diesel diffusion flame in a constant volume vessel is investigated with CFD simulation using this reduced mechanism, and validated by high speed photography. The calculated results show very good agreement to the experiment, both chemiluminescent flame and high temperature flame could be evaluated accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call