Abstract

In this contribution, an overview of the progress in the design of an enhanced FLOX® burner is given. A fuel flexible burner concept was developed to fulfill the requirements of modern gas turbines: high specific power density, high turbine inlet temperature, and low NOx emissions. The basis for the research work is numerical simulation. With the focus on pollutant emissions a detailed chemical kinetic mechanism is used in the calculations. A novel mixing control concept, called HiPerMix®, and its application in the FLOX® burner is presented. In view of the desired operational conditions in a gas turbine combustor this enhanced FLOX® burner was manufactured and experimentally investigated at the DLR test facility. In the present work experimental and computational results are presented for natural gas and natural gas + hydrogen combustion at gas turbine relevant conditions and high adiabatic flame temperatures (up to Tad = 2000 K). The respective power densities are PA = 13.3 MW/m2/bar (NG) and PA = 14.8 MW/m2/bar (NG + H2) satisfying the demands of a gas turbine combustor. It is demonstrated that the combustion is complete and stable and that the pollutant emissions are very low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call