Abstract

This research focuses on the electrokinetic motion of fullerenes suspended in liquid crystal host medium, which are investigated in the homogeneously aligned nematic liquid crystal cells driven by in-plane field. We investigated the effect of electrophoretic and dielectrophoretic forces and related parameters of the colloidal fullerenes in liquid crystals. The electrophoretic mobility, zeta potential, and critical voltage have been evaluated. Fullerenes suspended in liquid crystal medium migrated toward the positive electrode, but were pulled back in the opposite direction when the polarity was reversed especially at low frequency range (<5 Hz) . At higher electric field and higher frequency ranges, the net displacement of fullerenes has been observed. We demonstrate that the dielectrophoretic force dominated the motion in the colloidal fullerenes by a proper analysis of different electrophoretic parameters. In addition, the electrodynamics of fullerenes was explained by applying the theory of the dielectrophoresis and Schwarz's formula. We propose a model to estimate the density of fullerenes suspended in liquid crystal medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.