Abstract

Computer simulations are performed to study translational motion and deformation of a liquid column or jet, in a plane perpendicular to its axis, due to a transverse electric field. A front tracking/finite difference scheme is used in conjunction with the Taylor-Melcher leaky dielectric theory to solve the governing equations. The column is confined within a rectangular channel, wall-bounded in the vertical direction and periodic in the horizontal direction. It is shown that perfect dielectric columns move toward electrode wall of shorter initial distance, but the leaky dielectric columns may move toward or away from it, depending on the relative importance of the ratios (drop fluid to suspending fluid) of their electric permittivity and conductivity. Furthermore, the degree of interface deformation might increase or decrease with the initial separation distance from the shorter electrode wall due to the same factor. Scaling arguments are used to discern the correlation between the translational velocity and the initial separation distance from the electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.