Abstract

This study reports a single-phase solid-solution of barium titanate- bismuth ferrite (1-x) BaTiO3-xBiFeO3 (x = 0.0, 0.1, 0.2 and 0.3, abbreviated as BTO, BTBF1, BTBF2 and BTBF3) composition fabricated via conventional solid-state reaction technique. The BFO modified BTO ceramics exhibit a single perovskite structure with pseudo-cubic (x ≥ 0.1) symmetry, and the c/a ratio decreases with an increase in BFO content. Dielectric studies suggest that the ferroelectric-paraelectric phase transition around 150 °C for BTBF1 ceramic increases to 180 °C for BTBF3 ceramic, attributed to the higher transition temperature of BFO ceramic. The temperature-dependent impedance studies suggest non-Debye type relaxation and NTCR (negative temperature coefficient of resistance) behavior of the composition. Among the prepared ceramics, BTBF1 ceramic showed an improved energy density of 39.91 mJ/cm3 and energy efficiency of 60.92%. Thus, prepared ceramics can be considered a potential candidate for energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.