Abstract

The current research work presents the preparation and characterization of some new electronic materials using bismuth oxide (Bi2O3) and industrial waste red mud in different proportion by weight using a cost-effective mixed-oxide technique. Preliminary X-ray structural analysis exhibits the formation of compounds with structure analogous to that of BiFeO3 compound along with some impurity phases. Studies of dielectric parameters (er and tanδ) of these compounds as a function of temperature and frequency exhibit that they are almost temperature independent in the low temperature range and possess high relative permittivity with low loss in the high temperature range. Detailed studies of impedance and related parameters exhibit that the electrical properties of these materials are strongly dependent on temperature, and bear a good correlation with their microstructures. The bulk resistance, evaluated from complex impedance spectra, is found to be decreasing with rise in temperature, exhibiting a typical negative temperature co-efficient of resistance (NTCR)—type behavior similar to that of semiconductors. Studies of electric modulus indicate the presence of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The low leakage current and NTCR behavior of the sample have been verified from I–V characteristics. The nature of variation of dc conductivity with temperature confirms the Arrhenius and NTCR behavior in the material. The ac conductivity spectra show a typical-signature of an ionic conducting system, and are found to obey Jonscher’s universal power law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.